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ABSTRACT 
 

New methodology of evaluating damping properties of middle 
viscoelastic layer in three layered beams is presented. When the composite 
structure with two outer elastic layers is subjected to harmonic transverse load, 
the specific mechanism of damping is triggered. Flexure of the structure 
produces extensional strains in the face layers while shear strains prevail in the 
middle layer. This way of dissipation of energy is widely known as constrained 
layer damping. It is distinct from free layer damping where extensional strains 
are induced in viscoelastic layer.  

Mathematical formulation of the issue leads to an inverse problem.  
MSC. NASTRAN  Finite Element Method program is used to analyse  response 
of the structure tested in simultaneously performed experiment when different 
values of viscoelastic parameters are taken. The values are changed in the 
consecutive iterations. In every step the numerical response of the system 
subjected to harmonic excitation is compared with experimental measurements. 
This procedure is repeated as long as the best fit is reached. Cantilever beam 
excited at the free end by electromagnetic transducer is used in experiment. An 
inductive transducer measures displacements. 

Application of the algorithm for other structures is discussed. Alternative 
solution is proposed. 

 
 

INTRODUCTION 
 
Materials of viscoelastic properties exhibit internal damping. The advantage 

of it is taken to supress vibrations of low-stiffness structures subjected to 
periodic excitation. Viscoelastic tapes and films are applied to car body, aircraft 
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skin and other elements to avoid resonance. Mechanical description has been 
employed to survey behaviour of such multilayer systems. In most cases they 
can be approximated by models of plates and beams. The paper is devoted to the 
latter ones. 

Amount of the energy dissipated by such structures depends to a high degree 
on the mechanism of deformation that is induced in a viscoelastic material. Thus 
arrangement of layers plays an important role. One of the most common 
configurations comprises viscoelastic core covered with usually metallic sheet 
and bonded to vibrating layer. When layers are set in this manner shear prevail 
in the core while face sheets undergo extension. Mechanism of dissipation of 
energy observed in this system is called constrained layer damping. 

Differential equation governing vibrations of three-layer simply supported 
beam was derived for the first time by Kerwin [1]. Di Taranto [2] founded his 
analysis on assumptions made by Kerwin except he permitted arbitrary 
boundary conditions. He obtained sixth-order differential equations. Thorough 
discussion of this solution and extended examination of the case of clamped-
clamped sandwich beam was given by Mead and Markus in [3] and [4], 
respectively. Yan and Dowell [5] deduced exact and simplified equations (of 
forth order) on the basis of analysis of state of stress and strain in individual 
layers and application of interface conditions. Energy approach grounded on 
Hamilton’s principle was presented by Rao [6].  

Numerous treatises [7], [8], [9] are also devoted to numerical formulation of 
the problem. Various finite element method algorithms are proposed to model 
properly behaviour of multilayer damped structures and compute their dynamic 
response. 

All the aforementioned works focus either on determination of some 
parameters characterizing homogenized structure, solution of the problem of 
free and forced vibrations or optimal design of the composite. However the need 
sometimes arises to find out material parameters of viscoelastic core when 
dynamic response of the system is known. Altough there exist many well-
established methods for direct measurement of such quantities [10] solution of 
inverted problem still seems to be advantageous since the process of joining 
layers affects material properties. 

In this paper the algorithm enabling one to determine viscoelastic properties 
of middle layer in three-layer cantilever beams on the basis of frequency 
response of the structure is presented. The latter data is obtained from 
experiment. Numerical simulation of the dynamic tests is performed and model 
updating procedure is developed where values of parameters to be found are 
altered. MSC.Nastran programme is used for Finite Element Method 
computations. Outer layers are assumed to be made up of elastic materials of 
known parameters. 

 
 

FINITE ELEMENT METHOD MODEL 
 

Three dimensional model is constructed. Every sheet of a sandwich beam is 
modelled by one layer of isoparametric 8-node CHEXA solid elements (see 
Figure 1). Isotropic material description is applied for the whole structure. Face 
layers are assumed to be elastic. The viscoelastic core is represented by three 
parameters. Poisson ratio value is taken to be 0.40. The other two quantities that  
 



 

Figure 1. Finite element model of three-layer beam. 

 
 
 
are the unknown to be determined relate state of stress and strain in following 
manner:  
 
 [ ] )()(1)()( ωεωωωσ inE +=  (1) 
 
where i  is imaginary unit, 12 −=i , )(ωE  is storage modulus and )(ωη  is loss 
factor. 
 
 
NUMERICAL ANALYSIS 

 
The procedure for independent determination of the two unknown 

parameters is discussed below. The presented algorithm has been implemented 
in MATLAB programme. It uses MSC.Nastran solver to perform Finite Element 
Method analysis. 

 
Storage Modulus Determination 

 
Modal analysis of the structure is carried out for different values of storage 

modulus until required agreement of numerical results with experimental 
response is reached. Since storage modulus depends on frequency this iterative 
process has to be repeated for every resonant frequency observed in experiment. 
To speed up the search of correct values the optimisation algotithm based on 
Nelder-Mead simplex algorithm [11] is implemented. Finally set of modal 
values of the parameter is obtained. In every iteration real eigenvalue problem is 
solved 
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Influence of loss factor is neglected here. To get exact values of 
eigenfrequencies complex eigenvalue analysis should be performed. Loss factor 
would enter equation (2) but independent determination of the parameters would 
be impossible. 
 



Loss Factor Determination 
 
Process of determination of loss factor is analogous to that described in 

previous chapter. Herein frequency domain analysis is performed and shape of  
resonant peaks (that is proved to be dependent on loss factor [12]) obtained from 
experiment and numerical calculations is compared. Values of storage modulus 
determined in previous procedure are used. Equation of motion for harmonic 
excitation has the form 
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Complex stiffness matrix is obtained because hysteretic model of material 
damping has been used. Constitutive equation (1) is still valid but it is proved 
[13] that unlike when viscous damping model is applied if set of equations (3) is 
uncoupled loss factor does not affect value of resonant frequency and hence 
storage modulus stays unaltered. Unfortunatelly this property cannot be fully 
exploited here since in general damped modes do not satisfy orthogonality 
conditions and thus do not allow uncoupled equations of motion (3) to be 
obtained. Optimisation procedure based on golden section search and parabolic 
interpolation [14] is implemented to seek loss factor values. 
 
 
CONCLUSIONS 

 
Numerical procedure for determination of properties of viscoelastic layer in 

sandwich beams has been presented. An example of three-layer beam has been 
investigated. It should be emphasized that the same algorithm can be used for 
other structures with arbitrary arrangement of layers provided that required 
experimental data is available. Application of Finite Element Method enables 
one to reject kinematical constraints imposed in theoretical formulation of the 
problem but as it has been shown above some discrepancies are encountered. 

Time domain formulation is planned to be developed in near future. This 
requires modification of experimental stand (faster excitation transducer and 
pick-up sensor should be mounted to allow generation and detection of impact 
signal) but it is hoped to yield more data needed to determine the unknown 
parameters.  
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